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A DERIVATION OF CONVOLUTION MODEL
The outgoing radiance at point 𝑝 along direction 𝜔𝑜 , 𝐿𝑜 (𝑝,𝜔𝑜 ) is
given by

𝐵(𝑝,𝜔𝑜 ) =
∫
𝐻 2 (n)

𝑓𝑟 (𝑝,𝜔𝑜 , 𝜔𝑖 )𝐿(𝑝,𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖 , (1)

where 𝑓 is the BRDF and 𝐿(𝑝,𝜔𝑖 ) is the incident radiance along
direction 𝜔𝑖 . For the Torrance-Sparrow BRDF, 𝑓 is defined as

𝑓 (𝑝,𝜔𝑜 , 𝜔𝑖 ) = 𝐾𝑑 + 𝐾𝑠
𝐷 (𝜔𝑚)𝐹 (𝜔𝑜 · 𝜔𝑚)𝐺 (𝜔𝑖 , 𝜔𝑜 )

4 cos𝜃𝑖 cos𝜃𝑜
, (2)

where 𝜔𝑚 is the half-direction vector 𝜔𝑚 = (𝜔𝑖 + 𝜔𝑜 )/| |𝜔𝑖 + 𝜔𝑜 | |;
𝐷 (𝜔𝑚) is the normal distribution function; 𝐹 (𝜔𝑜 ·𝜔𝑚) is the Fresnel
term. Ramamoorthi and Hanrahan simplify this term to 𝐹 (𝜃𝑜 ), as the
angle 𝜃𝑜 is often close to the angle between𝜔𝑜 and𝜔𝑚 ;𝐺 (𝜔𝑖 , 𝜔𝑜 ) is
the shadowing-masking term. Ramamoorthi and Hanrahan ignore
𝐺 . We assume shadowing and masking are independent statistical
events, so that 𝐺 (𝜔𝑖 , 𝜔𝑜 ) = 𝐺 (𝜔𝑖 )𝐺 (𝜔𝑜 ).
There are two important notes about the denominator in Equa-

tion 2:
(1) 1/(4 cos𝜃𝑜 ) results from the half-direction transform: the

distribution of microfacets with a normal 𝜔𝑚 is transformed
to the distribution of outgoing directions𝜔𝑜 that the incoming
light ray 𝜔𝑖 reflects toward (see Pharr et al., Equation 9.27).

(2) 1/(cos𝜃𝑖 ) cancels out the cosine term applied to the incoming
radiance (see Pharr et al., equation 9.30).

We now substitute Equation 2 into Equation 1 and split the equa-
tion into diffuse and specular

𝐵(𝑝,𝜔𝑜 ) = 𝐾𝑑
∫
𝐻 2 (n)

𝐿(𝑝,𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖 (3)

+ 𝐾𝑠
∫
𝐻 2 (N)

𝐷 (𝜔𝑚)𝐹 (𝜔𝑜 · 𝜔𝑚)𝐺 (𝜔𝑖 , 𝜔𝑜 )
4 cos𝜃𝑖 cos𝜃𝑜

𝐿(𝑝,𝜔𝑖 ) cos𝜃𝑖𝑑𝜔𝑖

This equation is simplified by Ramamoorthi and Hanrahan using
the assumptions that 𝐹 only depends on 𝜃𝑜 and shadowing-masking
is ignored. We replace the integral of incoming radiance for diffuse
with the symbol for irradiance 𝐸.

𝐵(𝑝,𝜔𝑜 ) = 𝐾𝑑𝐸 (𝑝) + 𝐾𝑠𝐹 (𝜃𝑜 )
∫
𝐻 2 (N)

𝐷 (𝜔𝑚)
4 cos𝜃𝑜

𝐿(𝑝,𝜔𝑖 )𝑑𝜔𝑖 . (4)
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Ramamoorthi and Hanrahan rewrite the specular term as a con-
volution between a filter based on 𝐷 , and 𝐿. Crucially, the domain
of 𝐷 in the Torrance-Sparrow model is the half-angle space. In
Ramamoorthi and Hanrahan’s derivation, the spherical harmonic
representation for this filter, in the paper referred to as 𝑆 is derived
in incoming-direction space for normal exitance (Ramamoorthi and
Hanrahan, Equation 27). This has two consequences:

(1) We do not have to account for a change of variables and
1/(4 cos𝜃𝑜 ) can be removed.

(2) In reality, 𝑆 depends on the outgoing direction that is observed
and thus, the filter changes shape. This variation is ignored
with the explanation that “the BRDF filter is essentially sym-
metric about the reflected direction for small viewing angles,
as well as for low frequencies l. Hence, it can be shown by
Taylor-series expansions and verified numerically, that the
corrections to equation 20 [Equation 9 in our paper] are small
under these conditions.”

This means that we can rewrite Equation 4 with a convolution

𝐵(𝑝,𝜔𝑜 ) = 𝐾𝑑𝐸 (𝑝) + 𝐾𝑠𝐹 (𝜃𝑜 ) [𝑆 ∗ 𝐿]𝜔𝑜
, (5)

which equals Equations 21 and 22 in Ramamoorthi and Hanrahan.

B SAMPLING THEORY
The transformation from the directional domain to spherical har-
monics begs the question: do we have the enough samples to accu-
rately recover the coefficients of the outgoing radiance? We know
from Equation 9 that the BRDF acts as a low-pass filter parame-
terized by 𝛼 . We connect this knowledge with sampling theory to
derive lower bounds on sampling counts.
The Nyquist-Shannon theorem provides a lower bound on the

number of samples required to exactly recover a band-limited signal
using a Fourier series. Similar theorems have been developed for
spherical harmonics [Driscoll and Healy 1994; McEwen et al. 2011;
McEwen and Wiaux 2011]. These state that, to recover a spher-
ical signal with band-limit ℓ∗, the number of samples should be
O(ℓ∗2). The sampling rate and related band-limit have direct con-
sequences for BRDF recovery. Assume that the incoming light has
been sampled at a high enough rate to be accurately recovered, for
example, from projected photographs or a gazing sphere. Then the
outgoing light is the weakest link, as it is sampled by moving the
camera along 𝑁 positions around the object. Sampling theory tells
us that we can only accurately recover outgoing radiance that is
band-limited to ℓ∗ <

√
𝑁 degrees. Signals with non-zero amplitude

in higher degrees will suffer from aliasing.
Fortunately, the BRDF acts as a low-pass filter on the incoming

radiance (Equation 9). That means the outgoing radiance can fall
into two categories, based on the 𝛼 parameter of the material (𝛼 =

roughness2): 𝛼 is either too low or 𝛼 is high enough to recover
spherical harmonic coefficients. If 𝛼 is too low, the low-pass filtering
from the BRDF does not band-limit the signal enough to accurately
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2 • Anon.

recover with the given sampling rate. The threshold for 𝛼 can be
determined based on Equation 9. Let 𝑡 be an acceptable attenuation
factor for degrees ℓ > ℓ∗. We solve Equation 9 for 𝑡 to find the lower
bound, 𝛼 ′, for accurate recovery

𝛼 ′ = ℓ∗−1
√
− ln 𝑡 . (6)

An acceptable threshold 𝑡 can be determined empirically, by investi-
gating the reconstruction error for a set of environment maps. To
provide some intuition, for 𝑁 = 400 samples and a threshold of
𝑡 = 0.5, 𝛼 ′ ≈ 0.07. Above this threshold, our method can recover 𝛼
and 𝐾𝑠 to an acceptable accuracy, provided that the incoming radi-
ance has enough amplitude in the right degrees. This also extends to
non-uniform samples, because the Nyquist-Shannon theorem holds
for non-uniform samples [Marvasti 2012]. In other words: if a lower
bound on 𝛼 is known, it does not matter where the camera is placed,
as long as the average distance to the closest sample is equal to 1/𝑁 .
It also means that one can determine the number of required views
based on the lowest 𝛼 that should be recovered: 𝑁 ∼ 𝛼−2.
It is important to understand what happens if 𝛼 < 𝛼 ′. First, we

would be uncertain where 𝛼 lands between 0 and 𝛼 ′, based on the
power spectrum alone. For 0 < 𝛼 < 𝛼 ′, Equation 9 is close to 1 for
all degrees below ℓ∗. Second, because this situation occurs for low
𝛼 , the outgoing radiance should be similar to the incoming radiance,
up to a scaling factor for absorption and transmission. It is unlikely
that the spherical harmonics decomposition with significant aliasing
will match a filtered version of the incoming radiance. Therefore,
we can detect that 𝛼 < 𝛼 ′. In this case, the MSE for any parameter
combination𝜓 is relatively high. Once such a case is detected, we
know that our spherical harmonic-based analysis provides no fur-
ther insights on (un)certainty. There is still a chance for accurate
BRDF recovery if 𝛼 < 𝛼 ′. A sample might land on a fortunate spot
in the outgoing radiance field. This is the case when there is high
local variation in the incoming light around the sample locations,
resulting in large changes in radiance for small changes in 𝛼 . One
could quantify this variation by comparing the difference between
the sample location for 𝛼 = 0 and 𝛼 = 𝛼 ′ and use this as a measure
of certainty. In our work, we find that our certainty measure works
well, even for 𝛼 < 𝛼 ′ and thus, we do not add this measure.

C STANFORD ORB OTHER RESULTS
We include the results table from StanfordORB for reference. These
results were obtained under different acquisition condition and
cannot be directly compared to our results.

D ABLATIONS

D.1 Spherical Harmonics fitting
Our method computes spherical harmonic coefficients using a least-
squares fit and includes a regularizer. We would like to understand
the effect of the maximum degree that is estimated, find the optimal
weight for the regularizer, and see if the regularizer has the desired
effect (improved accuracy). The results for the maximum degree are
presented in Table 2. We find that more degrees help, but also that
we obtain good results with a relatively low number of degrees (from
3 on). In Table 3, we find that our approach is not very sensitive to
the specific setting of the regularizer, with an optimal value near

Table 1. Benchmark Comparison for Novel Scene Relighting of Existing
Methods from [Kuang et al. 2023].† denotesmodels trainedwith the ground-
truth 3D scans and pseudo materials optimized from light-box captures. The
rest of results are obtained by optimizing jointly for illumination, geometry
and material. We report these numbers for reference, however they cannot be
directly compared to our results.

PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓

NVDiffRecMC [Hasselgren et al. 2022] † 25.08 32.28 0.974 0.027
NVDiffRec [Munkberg et al. 2022] † 24.93 32.42 0.975 0.027

PhySG [Zhang et al. 2021a] 21.81 28.11 0.960 0.055
NVDiffRec [Munkberg et al. 2022] 22.91 29.72 0.963 0.039
NeRD [Boss et al. 2021] 23.29 29.65 0.957 0.059
NeRFactor [Zhang et al. 2021b] 23.54 30.38 0.969 0.048
InvRender [Wu et al. 2023] 23.76 30.83 0.970 0.046
NVDiffRecMC [Hasselgren et al. 2022] 24.43 31.60 0.972 0.036
Neural-PBIR [Sun et al. 2023] 26.01 33.26 0.979 0.023

Table 2. Ablation max degree ℓ∗

ℓ∗ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

0 25.670 32.580 0.971 0.042 0.94s
1 25.531 32.536 0.971 0.042 1.08s
2 25.588 32.568 0.971 0.043 1.10s
3 25.881 32.983 0.972 0.041 1.13s
4 26.134 33.142 0.972 0.040 1.21s
5 (Ours) 26.182 33.215 0.972 0.040 1.42s
6 26.199 33.266 0.972 0.040 1.70s
7 26.147 33.227 0.972 0.040 2.05s
8 26.153 33.241 0.972 0.040 3.02s

Table 3. Ablation regularizer weight

𝜆 PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

1 × 10−2 26.498 33.683 0.976 0.033 4.32s
1 × 10−3 26.524 33.703 0.976 0.033 4.33s
1 × 10−4 26.582 33.762 0.976 0.033 4.33s
1 × 10−5 26.484 33.667 0.975 0.033 4.33s
1 × 10−6 26.638 33.807 0.976 0.033 4.33s
1 × 10−6 constant 26.611 33.788 0.976 0.032 4.36s
1 × 10−7 26.585 33.750 0.975 0.033 4.33s

𝜆 =1 × 10−4. When optimizing BRDF parameters, it is typical to
weight samples based on their angle with the normal, 𝜃 . For example,
samples at grazing angles are often associated with lower confidence
and weighted less than samples near 𝜃 = 0. We set up a general
weighting function, max(0, 1 − (1 − cos𝑎𝜃 )𝑏 ) that ignores samples
with 𝜃 > 𝑎 𝜋2 and weights the rest with a smooth falloff determined
by 𝑏. We observe in Table 4 that 𝑎 = 1, 𝑏 = 1 gives the best results.
We also observe that weighting is beneficial, compared to constant
weight (top row).
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Table 4. Ablation sample weighting

max(0, 1 − (1 − cos𝑎𝜃 )𝑏 ) PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

No weighting 26.457 33.607 0.975 0.034 4.33s
𝑎 = 0.8, 𝑏 = 1 26.445 33.705 0.976 0.032 4.33s
𝑎 = 0.9, 𝑏 = 1 26.529 33.725 0.976 0.032 4.33s
𝑎 = 1, 𝑏 = 1 (Ours) 26.638 33.807 0.976 0.033 4.33s
𝑎 = 1, 𝑏 = 2 26.618 33.800 0.976 0.032 4.33s
𝑎 = 1, 𝑏 = 3 26.588 33.778 0.976 0.033 4.33s
𝑎 = 1, 𝑏 = 4 26.558 33.750 0.975 0.033 4.33s
𝑎 = 1, 𝑏 = 5 26.530 33.719 0.975 0.033 4.33s
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